pop <- breeding.diploid(
pop,
bve = TRUE,
bve.gen = 1:5,
heritability = 0.5 # Must provide h²
)13 Genomic Prediction
13.1 Internal GBLUP (Known h²)
13.2 rrBLUP Package
pop <- breeding.diploid(
pop,
bve = TRUE,
bve.gen = 1:5,
bve.rrblup = TRUE # Uses rrBLUP::mixed.solve
)13.3 Bayesian Methods (BGLR)
pop <- breeding.diploid(
pop,
bve = TRUE,
bve.gen = 1:5,
bve.bglr = TRUE,
bglr.model = "BayesB" # BayesA, BayesB, BayesC, etc.
)13.4 BLUPF90
pop <- breeding.diploid(
pop,
bve = TRUE,
bve.gen = 1:5,
bve.blupf90 = TRUE,
blupf90.path = "/path/to/blupf90"
)13.5 Cross-Validation
# Assess prediction accuracy
accuracy <- analyze.bv(
pop,
gen = 5,
cohorts = "TestSet",
bve.gen = 1:4 # Training set
)
print(accuracy$correlation) # Accuracy
print(accuracy$bias) # Bias13.6 Summary
- Multiple BVE methods
- Integration with R packages and external software
- Accuracy assessment
Continue to Chapter 14: Population Structure!